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Abstract

This paper addresses the development of a unified framework for quantifying hysteresis and con-
stitutive nonlinearities inherent to ferroelectric, ferromagnetic and ferroelastic materials. Because
the mechanisms which produce hysteresis vary substantially at the microscopic level, it is more nat-
ural to initiate model development at the mesoscopic, or lattice, level where the materials share
common energy properties along with analogous domain structures. In the first step of the model
development, Helmholtz and Gibbs energy relations are combined with Boltzmann theory to con-
struct mesoscopic models which quantify the local average polarization, magnetization and strains
in ferroelectric, ferromagnetic and ferroelastic materials. In the second step of the development,
stochastic homogenization techniques are invoked to construct unified macroscopic models for non-
homogeneous, polycrystalline compounds exhibiting nonuniform effective fields. The combination of
energy analysis and homogenization techniques produces low-order models in which a number of pa-
rameters can be correlated with physical attributes of measured data. Furthermore, the development
of a unified modeling framework applicable to a broad range of ferroic compounds facilitates ma-
terial characterization, transducer development, and model-based control design. Attributes of the
models are illustrated through comparison with piezoceramic, magnetostrictive and shape memory
alloy data and prediction of material behavior.
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1 Introduction

Ferroelectric, ferromagnetic and ferroelastic materials share a number of mesoscopic and macroscopic
attributes including the formation of analogous domain structures and the presence of hysteresis and
constitutive nonlinearities as illustrated in Figure 1. While hysteresis and constitutive nonlinearities
are inherent to all presently employed ferroic compounds, the degree and severity of these effects
can often be mitigated by restricting drive levels, employing appropriate drive electronics, or in-
corporating feedback loops in transducers. In many applications, however, hysteresis and material
nonlinearities are unavoidable and must be incorporated in models and subsequent control designs to
achieve the full capabilities of the materials. To illustrate, we consider the behavior of certain repre-
sentative ferroelectric, ferromagnetic and ferroelastic materials employed in present high performance
transducer applications.

Piezoceramic actuators are employed for nanoscale positioning due to their high set point accu-
racy and broadband capability. In present atomic force microscope (AFM) or scanning tunneling
microscopic (STM) designs, PID or robust control laws are employed to mitigate hysteresis in the
relation between input fields or voltages and strains generated by the device [7, 28, 87, 88, 89, 90].
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Figure 1. Hysteresis and constitutive nonlinearities exhibited by various ferroic compounds.
(a) PZT5A data, (b) Terfenol-D data, and (c) NiTi data.
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This is effective for low scan rates and has led to the phenomenal success of the devices. However, at
the higher scan rates required for mass product diagnostics (e.g., quality evaluation of semiconductor
chips) or real-time monitoring of biological processes (e.g., observation of protein folding dynamics),
noise to data ratios and diminishing high pass characteristics of control filters preclude the sole use
of feedback control laws to mitigate hysteresis, and control designs utilizing model-based inverse
compensators are under investigation [24, 25, 111, 124]. In other applications utilizing piezoce-
ramic actuators, the use of charge or current controlled amplifiers can essentially eliminate hysteresis
[64, 65, 66, 67, 68]. However, this mode of operation can be prohibitively expensive as compared
with the more commonly employed voltage control amplifiers, and current control is ineffective if
maintaining DC offsets as required for numerous applications – e.g., the x-stage in an AFM must
hold a specified position while a sweep is performed in the y-stage.

In magnetic materials, significant research is focused on the development of compositions and
compounds which maximize performance specifications such as output strains and blocked forces
while minimizing hysteresis. This has motivated the development of new rare earth transducer com-
pounds, such as Galfenol [21, 22], as well as ferromagnetic shape memory alloy (FSMA) compounds
[20, 37, 54, 78, 116]. However, the materials with the highest work density metrics still exhibit signif-
icant hysteresis and constitutive nonlinearities which must be accommodated in transducer design.
Moreover, for other technologies including magnetic recording, a high degree of hysteresis is actually
required to provide the history required for the application.

In the class of ferroelastic materials, shape memory alloys (SMA) are being increasingly considered
for civil, aeronautic, aerospace and industrial applications which require significant passive damping
or utilize the high work output densities exhibited by the materials. Because the energy dissipated
by ferroic materials is proportional to the area of the hysteresis loop, pseudoelastic operating regimes
which maximize hysteresis are required when employing SMA as tendons to attenuate earthquake
or wind-induced vibrations in buildings or as fibers to eliminate vibrations in articulated antennas
or membrane mirrors – see [4, 33, 34, 35, 121] for recent civil applications and [91, 92] for details
regarding the modeling of hysteresis-induced damping behavior. The utilization of temperature-
induced phase transitions to provide actuator capabilities is under intense investigation in the context
of microelectromechanical systems (MEMS), thin film SMAs, and microactuator applications since
surface area to volume ratios in these geometries promote rapid cooling and hence high frequency
drive capabilities. For example, Ho et al. report on a thin film micropump capable of operating at
300 Hz [46]. Additional details regarding thin film SMA applications can be found in [39, 61, 69] and
discussion regarding the development of SMA-based microgrippers relevant for microrobotics and
microassembly is provided in [59, 84, 85]. To achieve both the stress-induced damping capabilities
and temperature-induced actuator capabilities of SMA devices, it is necessary to quantify the inherent
hysteresis and constitutive nonlinearities in a manner feasible for transducer design and real-time
control implementation.

Finally, there is an increased focus on the design of hybrid transducers which utilize comple-
mentary properties of constituent materials. For example, the drive characteristics and 90o phase
shift between Terfenol-D and PZT or PMN is being utilized to construct hybrid transducers hav-
ing improved energy efficiencies and frequency bandwidths [15, 16, 36, 55]. However, the hysteresis
and nonlinearities inherent to the constituent materials must be accommodated to achieve optimal
performance with hybrid designs.

Hence from both the fundamental perspective of material characterization and future material de-
velopment, and the practical perspective of transducer design and model-based control development,
it is advantageous to develop unified frameworks for quantifying hysteresis and material nonlinear-
ities inherent to ferroelectric, ferromagnetic and ferroelastic materials. Material development and
characterization necessitate a high degree of accuracy whereas the practical requirements of trans-
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ducer design and real-time control implementation limit the complexity of models and favor models
which can be efficiently constructed and updated to accommodate changing operating conditions. In
this paper, we employ a multiscale development to provide a unified framework for quantifying the
hysteresis and constitutive nonlinearities inherent to a broad range of ferroic compounds. The goal
is to provide sufficient accuracy for material characterization while maintaining a complexity level
which facilitates transducer and control design in addition to real-time control implementation.

As summarized in Table 1, ferroelectric, ferromagnetic and ferroelastic materials share a num-
ber of common traits including the presence of multiple domains, which are separated by domain
boundaries or walls, and field-induced phase transitions in the vicinity of the Curie temperature Tc.
A unified analysis of these shared properties dates back at least to the work of Nye [77] and, in 1970,
Aizu presented a unified treatment of certain symmetry properties of ferroelectric, ferromagnetic and
ferroelastic compounds which he collectively referred to as ferroic compounds [5]. Shared attributes
of ferroic compounds have subsequently been exploited by a number of researchers when categorizing
properties of the materials [76, 109, 120].

The physical mechanisms which produce hysteresis and constitutive nonlinearities in ferroelectric,
ferromagnetic and ferroelastic compounds differ significantly at the microscopic scales. In ferroelec-
tric materials, hysteresis is partially attributed to dipole switching and domain wall losses whereas
moment rotation and domain wall losses produce hysteresis in ferromagnetic compounds. While a
number of analogies between hysteresis mechanisms in ferroelectric and ferromagnetic compounds
can be made based on shared domain properties of the materials, the actual molecular mechanisms
and scales on which domain properties occur, differ substantially. Furthermore, hysteresis in shape
memory alloys is due to phase transitions between austenite and martensite variants. Hence the
construction of unified energy-based models at microscopic scales is not considered feasible.

At the lattice, or mesoscopic, and macroscopic scales, however, shared domain and energy prop-
erties can be utilized to construct unified models for a broad range of ferroic materials. In the first
step of the present development, Helmholtz and Gibbs energy relations are derived at the lattice level
and employed in Boltzmann theory to obtain evolution equations which quantify the local average
polarization, magnetization and strains in ferroelectric, ferromagnetic and ferroelastic materials. For
homogeneous, single crystal compounds, these local relations can be extended throughout the mate-
rial to obtain macroscopic constitutive relations which quantify the bulk material behavior. In the
second step of the model development, stochastic homogenization techniques are employed to incor-
porate material nonhomogeneities, polycrystallinity, and nonuniform effective fields found in typical
ferroic compounds. The resulting macroscopic models are low order, and hence efficient to imple-
ment, with parameters that can be correlated with properties of the data. Furthermore, the unified
models guarantee the closure of biased minor loops and enforce the ‘deletion’ property in quasistatic

Ferroelectric Ferromagnetic Ferroelastic
Polarization Magnetization Strain
Electric field Magnetic field Stress
Paraelectric phase Paramagnetic phase Austenite phase
Ferroelectric phase Ferromagnetic phase Martensite phase
Ferroelectric domain walls Bloch or Neel walls Boundaries between variants
Devonshire theory Mean field (Weiss) theory Landau theory
Micromechanical ferroelectric theory Micromagnetic theory Ginzburg-Landau theory

Table 1. Analogies between physical properties of ferroic materials.
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drive regimes, and incorporate various temperature dependencies and relaxation mechanisms. The
resulting unified modeling framework, which has its genesis in the SMA theory of Achenbach and
Müller [1, 2], thus quantifies a wide range of phenomena common to ferroelectric, ferromagnetic and
ferroelastic compounds and pertinent to transducer designs which exploit the unique capabilities of
these materials.

To place this framework in perspective, it is useful to compare it with existing energy-based
and phenomenological methodologies used to quantify hysteresis in ferroic compounds. We refer the
reader to [18, 48, 51, 52, 62, 86, 108, 110] for a summary of nonlinear and hysteresis models for
ferroelectric and piezoelectric compounds, [17, 29, 30, 31, 56, 58, 63, 71] for ferromagnetic materials,
and [10, 40, 49, 50, 80, 81, 82, 99] for an overview of models for shape memory alloys. We summarize
next investigations focused on the development of unified models for ferroic compounds.

The theory in [109] exploits the shared domain structure of ferroic materials to construct unified
hysteresis models. In that development, statistical mechanics tenets are invoked to first construct
anhysteretic models for idealized materials devoid of pinning sites. Electrostatic, magnetostatic
and elastic energy relations are then employed to quantify the reversible and irreversible energy
required to translate domain walls in the materials. The resulting models are low-order but have the
disadvantage that it is difficult to enforce closure of biased minor loops without a priori knowledge of
turning points. We point out that the asymptotic models derived in the present framework through
statistical mechanics principles are the Ising model employed in the theory of [109] to quantify the
equilibrium anhysteretic behavior of ferromagnetic and ferroelectric materials.

A variety of phenomenological techniques have also been developed to construct unified hys-
teresis models for ferroic compounds. In the theory developed by Soukhojak and Chiang [115],
phenomenological principles are used to construct rheological models which quantify the time and
frequency-dependent behavior of a range of ferroic materials. Preisach techniques have also been
employed for characterizing hysteresis and nonlinearities in numerous ferroic compounds due to their
generality and rigorous mathematical foundation [3, 8, 11, 41, 71, 60, 83, 119]. The generality
of Preisach models also constitutes a weakness in the technique since it is difficult to incorporate
known physics or properties of the data when determining parameters in the models. As discussed
in [31, 63], extensions to classical Preisach theory are also required when incorporating reversible ef-
fects and temperature and frequency dependencies, and relaxing congruency properties to model the
incongruent behavior exhibited by materials. In [112], it is illustrated that the framework presented
here provides an energy basis for extended Preisach models with four important differences. (i) The
energy derivation yields physical parameters which can be correlated with properties of the data –
this facilitates model construction and updating to accommodate changing system inputs. (ii) The
temperature dependencies and relaxation mechanisms are incorporated in the basis, or hysterons,
rather than in the densities, measures or parameters – this eliminates the necessity of lookup tables
or vector-valued parameters when employing the models in variable temperature or certain dynamic
regimes. (iii) The model does not erroneously enforce congruency and hence does not need to be
modified to achieve the noncongruency exhibited in a number of operating regimes. (iv) The model
automatically incorporates reversibility through the energy derivation of the hysterons and hence
does not require modification to accommodate low drive regimes.

In Section 2, we develop mesoscopic energy relations, differential equations quantifying the evo-
lution of phase fractions, and asymptotic relations characterizing the average local polarization,
magnetization and strains in ferroelectric, ferromagnetic and ferroelastic compounds. The theory is
extended in Section 3 to nonhomogeneous, polycrystalline compounds exhibiting nonuniform effec-
tive fields by considering parameters such as coercive fields and relative stresses to be manifestations
of underlying distributions. Attributes of the unified models are then illustrated in Section 4 through
comparison with PZT5A, Terfenol-D and NiTi data as well as prediction of material behavior.
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2 Mesoscopic Models

We summarize here the development of mesoscopic models derived through the construction of ap-
propriate Helmholtz and Gibbs energy relations at the lattice level with Boltzmann theory used to
quantify the probability of achieving various energy states. When combined with differential equa-
tions which quantify temperature changes within the materials, this yields a coupled set of evolution
equations quantifying the local average polarization, magnetization and strains in ferroelectric, fer-
romagnetic and ferroelastic compounds. For homogeneous, single crystal compounds having uniform
fields or stresses, these local relations apply throughout the material and hence provide macroscopic
models which characterize hysteresis and constitutive nonlinearities. These local, mesoscopic rela-
tions are extended in Section 3 to accommodate the effects of polycrystallinity, material defects,
inclusions, nonhomogeneities, and variable effective fields and stresses. To simplify the discussion,
we develop both the mesoscopic and macroscopic polarization, magnetization and strain relations
in the context of piezoceramic, magnetostrictive and shape memory compounds. However, the the-
ory is sufficiently general to encompass a broad range of ferroelectric, ferromagnetic and ferroelastic
materials.

To provide a general framework for formulating the unified models, we consider an order parame-
ter e and external fields ϕ that are thermodynamically conjugate to e. For ferroelectric, ferromagnetic
and ferroelastic materials, natural choices for e are respectively the polarization P , magnetization
M , and strains ε. The corresponding external fields ϕ are taken to be the electric field E, magnetic
field H, and stresses σ. For temperatures T , we denote Helmholtz energy relations by ψ(e, T ) and
Gibbs energy relations by G(e, ϕ, T ).

In the absence of applied fields, the Helmholtz relations provide a natural measure of energy and,
under the assumption of differentiability, thermodynamic equilibria are provided by the necessary
condition

∂ψ

∂e
= 0. (1)

In the presence of an applied field, the Gibbs relation

G(e, ϕ, T ) = ψ(e, T )− ϕe (2)

is used to quantify the total energy, and equilibrium states are specified by the necessary conditions

∂G

∂e
= 0 ,

∂2G

∂e2
> 0. (3)

The relation (3) can be interpreted as providing conditions under which the order parameter adjusts
to balance the internal energy with work due to the applied field. As will be noted in subsequent
discussion, the conditions (3) also provide asymptotic conditions specifying the local polarization,
magnetization and strains at the lattice level as well as macroscopic constitutive relations if elec-
tromechanical or magnetomechanical coupling is included in the Gibbs energy relation.

2.1 Piezoceramic Materials

Presently employed piezoceramic compounds are comprised of PbTi1−xO3 and PbZrxO3 with x
chosen to optimize electromechanical coupling. To simplify the discussion, we focus on PbTiO3

to motivate the construction of appropriate energy relations. At temperatures T above the Curie
temperature Tc, PbTiO3 exhibits a cubic form, whereas it has the tetragonal form depicted in
Figure 2a for T < Tc. A corresponding potential or Helmholtz energy profile associated with the
position of the Ti cation along the x3 axis is depicted in Figure 2b. In the presence of an applied
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Figure 2. (a) Tetragonal structure of PbTiO3 for T < Tc and resulting spontaneous polarization.
(c) Helmholtz energy as a function of Ti position along the x3-axis.

field E, the energy landscape distorts in the manner depicted in Figure 3. In the absence of thermal
energy, the local minimum associated with the stable equilibrium disappears when the field reaches
the local coercive field value Ec and it becomes energetically favorable for the Ti cation to change
configurations. This produces a dipole switch and subsequent hysteresis in the relation between
E and the local average polarization P . Whereas other mechanisms, including thermal activation,
contribute to the hysteresis and constitutive nonlinearities exhibited by piezoceramic materials, this
source of dipole switching helps motivate appropriate formulations for the Helmholtz and Gibbs
energy relations.

2.1.1 Helmholtz and Gibbs Energy Relations

Following the development in [114], we consider a uniform lattice of volume V and mass ν having
N cells. We also make the assumption that each cell has two possible orientations si = ±1 and
dipole moment p. We let Φ0 denote the energy required to reorient a single dipole when the lattice
is completely ordered.

The Helmholtz energy for the lattice is

ψ = U − ST

where U and S respectively denote the internal energy and entropy. As detailed in [114], the combi-
nation of mean field theory and classical statistical mechanics arguments yields the Helmholtz energy
relation

ψ(P, T ) =
Φ0N

2V

[
1− (P/Ps)2

]
+

TkN

2V Ps

[
P ln

(
P + Ps

Ps − P

)
+ Ps ln(1− (P/Ps)2)

]

=
EhPs

2
[
1− (P/Ps)2

]
+

EhT

2Tc

[
P ln

(
P + Ps

Ps − P

)
+ Ps ln(1− (P/Ps)2)

]
.

(4)

Here Eh = NΦ0
V Ps

is a bias field, Tc = Φ0
k is the Curie temperature (k is Boltzmann’s constant), and

Ps = Np
V denotes the saturation polarization. It is illustrated in [114] that ψ yields a double well

potential for T < Tc and a single well potential for T > Tc in accordance with the transition from a
ferroelectric phase to a paraelectric phase.
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activation.

To simplify subsequent implementation for fixed temperature regimes T < Tc, we also employ
the piecewise quadratic Helmholtz relation

ψ(P ) =




1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI

(5)

obtained through Taylor expansion of (4) in neighborhoods of the equilibria. The parameters PR and
PI respectively denote the local polarization value at which a local minimum of ψ occurs (see (1))
and the inflection point. From a physical perspective, PR and η represent the local remanence value
and reciprocal of the slope at saturation for the hysteron depicted in Figure 3b. Finally, we note
that the local coercive field Ec is related to PR, PI and η through the relation

Ec = η(PR − PI). (6)

From the potential energy relation UE = −p · E, it follows from (2) that an expression for the
Gibbs energy is

G(P, E, T ) = ψ(P, T )− EP (7)

for uniaxial lattice structures. The behavior of G for an increasing field and the resulting local
average polarization P are depicted in Figure 3.

2.1.2 Local Average Polarization

To quantify P it is necessary to determine the fractions of dipoles x+ and x− respectively having
positive and negative orientations, the likelihoods p+− and p−+ of switching from positive to negative,
and conversely, and the expected polarization values 〈P+〉 and 〈P−〉 associated with positive and
negative dipoles. In the absence of thermal activation, these quantities follow directly from the
necessary condition (3) which forms a basis for subsequent asymptotic relations for P . To incorporate
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measured relaxation phenomena, it is necessary to incorporate a balance of the thermal and Gibbs
energies through the Boltzman relation

µ(G) = Ce−GV/kT . (8)

The constant C is chosen to guarantee integration to unity over all admissible inputs and k again
denotes Boltzmann’s constant. Physically, the probability µ(G) of achieving an energy level G is
increased for large values of the relative thermal energy kT/V and diminished for small kT/V . Hence
more dipoles will have the energy required to jump from one stable equilibrium to the other when
kT/V is large than when kT/V is small or in the limiting case when kT/V → 0.

As detailed in [114], the likelihoods p+− and p−+ are given by

p+− =
1

T (T )
e−G(E,PI(T ),T )V/kT∫ ∞

PI(T )
e−G(E,P,T )V/kT dP

, p−+ =
1

T (T )
e−G(E,−PI(T ),T )V/kT∫ −PI(T )

−∞
e−G(E,P,T )V/kT dP

(9)

where the formulation in terms of the inflection points ±PI rather than the equilibrium value P0

can be argued either from energy principles or asymptotic analysis. The relaxation time T for the
material is related to the temperature and reference volume V of mass ν by the relation

T (T ) =

√
2πνV 2/3

kT
(10)

which can be interpreted as the reciprocal of the frequency at which dipoles attempt jumps. By
integrating the product Pµ(G) over all admissible polarization values and evaluating the integration
constant C, it follows that the average polarization values can be expressed as

〈P+〉 =

∫ ∞

PI

Pe−G(E,P,T )V/kT dP∫ ∞

PI

e−G(E,P,T )V/kT dP

, 〈P−〉 =

∫ −PI

−∞
Pe−G(E,P )V/kT dP∫ −PI

−∞
e−G(E,P )V/kT dP

. (11)

The evolution of dipole fractions is quantified by the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

(12)

which can be simplified to
ẋ+ = −p+−x+ + p−+(1− x+) (13)

through the identity x+ + x− = 1.
With the dipole fractions, transition likelihoods, and average polarization values thus defined,

the average local polarization at the lattice level is given by

P = x+ 〈P+〉+ x− 〈P−〉 . (14)

The formulation (14) incorporates thermal relaxation through the relation (10) as well as certain
temperature dependencies if the Helmholtz relation (4) is employed. While the use of (4) has been
illustrated for incorporating the temperature dependence associated with certain relaxor ferroelectric
compounds, more general temperature dependencies can be incorporated by modifying the piecewise
quadratic relation (5) in the manner illustrated in Section 2.3 for shape memory alloys.
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2.1.3 Thermal Evolution

To quantify changes in temperature due to convection and conduction to surrounding media,
Joule heating, and dipole switching, we employ a balance of energy to obtain the evolution equation

c̄MṪ (t) = −hcΩ[T − TE(t)]− λΩ
`

[T − TE(t)] + J(t)− [h+ẋ+ + h−ẋ−]. (15)

Here c̄,M, hc, Ω, λ and ` respectively denote the specific heat for PZT, the mass of the actuator, a
heat transfer coefficient, the surface area of the PZT, the thermal conductivity of the surrounding
medium, and the interval over which conduction occurs [47]. The first term on the right hand side of
(15) quantifies heat exchange due to convection whereas the second term incorporates potential heat
loss or sources due to conduction. The term J(t) characterizes temperature changes due to Joule
heating. For certain operating regimes, this can be quantified by the relation

J(t) = ρ̄eh
I2(t)
A (16)

where ρ̄e, h and A respectively denote the average electrical resistivity, thickness of the PZT, and
cross-sectional area of the PZT [100]. To incorporate additional geometric, electromagnetic, or
frequency-dependent effects, one can quantify J(t) either through experimental measurements or
more comprehensive models. We note that the incorporation of Joule heating mechanisms becomes
increasingly important in applications requiring high drive frequencies.

The final component of (15) quantifies heat transduction due to dipole switching so that h+ and
h− are analogous to the specific enthalpies in the corresponding SMA relation (51). This relation also
becomes increasingly significant for high frequency transduction. In general, validation experiments
will be required to establish regimes when this latter contribution should be retained as well as
operating conditions where it can be considered negligible. Finally, we point out that c̄ and ρ̄e are
considered as averages and the specification of phase-dependent components to these coefficients may
be required when quantifying the temperature changes which occur during phase transitions.

2.1.4 Asymptotic Polarization Relations in the Absence of Thermal Activation

For applications in which relaxation times are considered negligible, or do not constitute a sig-
nificant role in transducer behavior, the local average polarization expression can be simplied signif-
icantly by considering the limiting case in which thermal fluctuations about equilibrium values are
eliminated. As detailed in [114], the limiting models can be derived either through formal application
of the necessary condition (3) or rigorous consideration of the limits kT/V → 0 in the definition of
the likelihoods p+−, p−+ and average polarization values 〈P+〉 , 〈P−〉. To simplify the discussion, we
summarize the formal arguments here.

For the Helmholtz relation (4), enforcement of the necessary condition (3) with ε = P and ψ = E
yields the equilibrium relation

P (E) = Pstanh
(

E + αP

a(T )

)
, (17)

where
α =

Eh

Ps
, a(T ) =

EhT

Ps
,

for the average local polarization. We note that (17) is exactly the Ising relation employed in [108]
when quantifying the anhysteretic polarization and is equivalent through first-order terms with the
Langevin relations employed in various ferroelectric and ferromagnetic models. Translates of the
form P = Pstanh(E ± Ec) were also employed by Zhang and Rogers [123], and ridge functions
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of the form r(x) = tanh(x) are appropriate for generalized Preisach, or Krasnosel’skǐı-Pokrovskǐı
characterizations [8, 9, 60].

The relation resulting from (5) is slightly more complicated due to the piecewise nature of the
definition. Enforcement of the necessary condition (3) yields the general relation

P =
1
η
E + ∆PR (18)

where ∆ = 1 for positively oriented dipoles and ∆ = −1 for negative orientations. To specify P more
rigorously in terms of initial dipole orientations

[P (E; Ec, ξ)](0) =




E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

(19)

and transition times
τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec}, (20)

we employ the Preisach notation

[P (E; Ec, ξ)](t) =




[P (E; Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec

(21)

(e.g., see [8, 60, 112]). The dependence of the local average polarization P on the local coercive field
Ec is indicated as a prelude to the stochastic extensions to the theory developed in Section 3.

2.2 Magnetostrictive Materials

Field-induced magnetization changes in ferromagnetic compounds, and accompanying hysteresis,
are due primarily to a combination of two mechanisms: rotation of moments and losses associated
with domain wall motion [19, 27, 56]. For highly anisotropic materials, characterization of consti-
tutive nonlinearities and hysteresis necessarily requires incorporation of the anisotropy energy when
computing the energetic response of the material. For several classes of operating conditions and
materials, however, models based on the restriction of spins or magnetic moments to two possible ori-
entations, denoted si = ±1, can be developed. From a classical perspective, this assumption is valid
for materials which exhibit uniaxial crystalline anisotropies or transducers in which uniaxial stresses
dominate the crystalline structure. This latter category includes Terfenol-D transducers in which
prestress mechanisms are employed to maintain the rod in compression and to optimize magnetome-
chanical coupling [29, 30]. From a quantum perspective, the assumption of diametrically opposed
spins is commensurate with the observation that two allowable spin configurations are orientations
parallel and opposite to an applied field.

2.2.1 Helmholtz and Gibbs Energies

To construct a mesoscopic Helmholtz energy relation for ferromagnetic materials, we consider a
uniform and homogeneous lattice volume V of mass ν comprised of N cells, each of which is assumed
to contain one spin, or magnetic moment, m having the orientation si = ±1. As in the ferroelectric
model, we let Φ0 denote the energy required to reorient a single moment in a completely ordered
lattice – the relation between Φ0 and the magnetic exchange integral J is detailed in [105] – and make
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the assumption that only adjacent moments interact in accordance with mean field approximation
to the Ising model. As detailed in [105], formulation of the Helmholtz energy ψ = U − ST in this
context yields the relation

ψ(M, T ) =
HhMs

2
[
1− (M/Ms)2

]
+

HhT

2Tc

[
M ln

(
M + Ms

Ms −M

)
+ Ms ln(1− (M/Ms)2)

]
(22)

where Ms = Nm
V , Tc = Φ0

k , and Hh = NΦ0
V Ms

respectively denote the technical saturation magnetization,
Curie temperature, and bias field. The initial assumption that Φ0 is constant implies that Hh is
constant for a uniform, homogeneous lattice. This assumption is relaxed in Section 3 where we
consider statistically distributed values of Hh to accommodate material nonhomogeneities and the
effects of polycrystallinity. Finally, we note that ψ yields a single well potential for T ≥ Tc and a
double well potential in accordance with the transition from paramagnetic to ferromagnetic phases.

In [105], it is illustrated that Taylor expansion about the three equilibria can be employed to
construct the piecewise quadratic Helmholtz relation

ψ(M) =




1
2η(M + MR)2 , M ≤ −MI

1
2η(M −MR)2 , M ≥ MI

1
2η(MI −MR)

(
M2

MI
−MR

)
, |M | < MI

(23)

which facilitates implementation in fixed temperature regimes. Here MI and MR denote the inflection
point and minimum of ψ at which local remanence occurs – see Figure 3 for a depiction of analogous
behavior for ferroelectric materials.

For variable temperature applications, one can employ either (22) or a modification of (23) in
which temperature dependence is incorporated in a manner analogous to that employed in Section 2.3
for shape memory alloys. The former option automatically includes the ferromagnetic to paramag-
netic phase transition whereas the latter offers advantages from the perspective of implementation.

Since the magnetostatic energy is given by E = −µ0m · H, where µ0 denotes the magnetic
permeability, the uniaxial Gibbs energy can be specified either as

G(M, H, T ) = ψ(M, T )− µ0MH

or
G(M, H, T ) = ψ(M, T )−MH (24)

by incorporating µ0 in ψ. We employ (24) due to its commonality with the general Gibbs relation (2)
which facilitates the development of a unified modeling framework. A comparison of the Helmholtz
relations (4) and (22), the piecewise quadratic relations (5) and (23), and the Gibbs energy relations
(7) and (24) illustrates the commonality in the formulations for ferroelectric and ferromagnetic
compounds.

2.2.2 Average Local Magnetization

The development of local average magnetization relations is analogous to that for ferroelectric
materials and details are provided in [105, 106]. For operating regimes in which relaxation effects are
considered negligible, limiting values of the local average magnetization M can be formally obtained
from the necessary condition (3). For the Helmholtz relation (22) derived from statistical mechanics
principles, the condition H = ∂ψ

∂M yields

M = Mstanh
(

H + αM

a(T )

)
(25)
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where α = Hh
Ms

and a(T ) = Hh(T )
Ms

. The relation (25) is an Ising model whose input is the effective
field

He = H + αM. (26)

This relation was employed as the anhysteretic component of the unified models developed in [109].
Furthermore, it is illustrated in [108, 109] that if one relaxes the constraint that moments have only
the orientations si = ±1 and considers uniformly distributed moments, one obtains the Langevin rela-
tion M = L(He) ≡ Ms[coth(He/a)−a/He] which agrees with the Ising relation M = Mstanh(He/a)
through first order terms – see [19, 56] for a derivation of the Langevin equation in the context of
magnetic materials. The Langevin model M = MsL(He), with He specified by (26), is employed
when quantifying the anhysteretic magnetization in the domain wall theory of Jiles and Atherton
[57, 58] as well as the transducer models based on that theory [17, 29, 30].

The magnetization relation resulting from (24) in the absence of thermal activation is elementary
in the sense that it is piecewise linear but is complicated by the fact that a history of dipole switches
must be maintained to ascertain which branch of the hysteron is active. This can be accomplished
via the Preisach notation

[M(H; Hc, ξ)](t) =




[M(H; Hc, ξ)](0) , τ(t) = ∅
H
η −MR , τ(t) 6= ∅ and H(max τ(t)) = −Hc

H
η + MR , τ(t) 6= ∅ and H(max τ(t)) = Hc

(27)

where

[M(H; Hc, ξ)](0) =




H
η −MR , H(0) ≤ −Hc

ξ , −Hc < H(0) < Hc

H
η + MR , H(0) ≥ Hc

(28)

denotes initial moment orientations and the switching times τ(t) are specified by (20) with switching
occurring at the local coercive field values Hc and −Hc. Heuristically, the relation (27) has the form

M =
1
η
H + ∆MR (29)

where ∆ = ±1 is used to delineate the upper and lower branches of the hysteron.
To incorporate thermal activation and relaxation mechanisms – e.g., when modeling magnetic

after-effects of the type discussed in Chapter 20 of [19] – it is necessary to quantify the evolution of
the moments fractions x+ and x− having positive and negative spins. The notation and development
is analogous to that presented in Section 2.1.2 for ferroelectric materials and details regarding the
development of ferromagnetic materials can be found in [105, 106].

Since the probability of achieving an energy state G is given by (8), the transition likelihoods
p+− and p−+ are given by

p+− =
1

T (T )
e−G(H,MI ,T )V/kT∫ ∞

MI

e−G(H,M,T )V/kT dM

, p−+ =
1

T (T )
e−G(H,−MI ,T )V/kT∫ −MI

−∞
e−G(H,M,T )V/kT dM

(30)

where the relaxation time T is specified by (10). The expected magnetization values 〈M+〉 and
〈M−〉, due to positively and negatively oriented moments, are specified by

〈M+〉 =

∫ ∞

MI

Me−G(H,M,T )V/kT dM∫ ∞

MI

e−G(H,M,T )V/kT dM

, 〈M−〉 =

∫ −MI

−∞
Me−G(H,M)V/kT dM∫ −MI

−∞
e−G(H,M)V/kT dM

(31)
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which are analogous to the ferroelectric relations (11). Finally the average local magnetization M ,
which incorporates thermal relaxation mechanisms, is given by

M = x+ 〈M+〉+ x− 〈M−〉 (32)

where the moment fraction x+ is specified by the differential equation (13) and x− = 1 − x+. In
[105], it is illustrated that the relations (27) for materials with negligible relaxation characteristics
can also be rigorously derived from (30), (31) and (32) by considering the limiting case kT/V → 0.

2.2.3 Thermal Evolution

Temperature changes in magnetostrictive transducer materials are due to several mechanisms
including ohmic heating in the solenoid, which is transmitted to the Terfenol-D rod through con-
duction, Joule heating due to eddy currents, and potential internal heating due to the reorientation
of moments. To accommodate future designs, we also incorporate possible convection mechanisms
analogous to those considered for piezoceramic and shape memory alloy transducers.

To model the temperature transition in the magnetic material, we employ the notation of Sec-
tion 2.1.3 and let c̄, hc,M, Ω, λ, ` and TE(t) respectively denote the specific heat, a convection co-
efficient, the mass of the Terfenol-D rod, the surface area of the material, the thermal conductivity
of the solenoid, the path length of conduction, and the time varying temperature of the adjacent
environment. An energy balance then yields the differential equation

c̄MṪ (t) = −Ω [hc + λ/`] [T − TE(T )] + J(t)− [h+ẋ+ + h−ẋ−] (33)

governing the temperature evolution. A comparison of (33) with its ferroelectric counterpart (15)
reveals that the general temperature relations are identical.

To quantify the conductive and convective contributions, it is necessary to specify TE(t) either
experimentally or through additional models. For example, a fully coupled thermal model for a
Terfenol-D transducer would require the measurement or characterization of ohmic heating in the
solenoid and heat transmission through the device to specify TE(t). Similarly, the Joule component
J(t) can be determined either empirically or though eddy current relations. Finally, the last term in
(33) quantifies potential changes in temperature due to the reorientation of moments. The relevance
of this term for specific operating conditions should be established through validation experiments.

2.3 Shape Memory Alloys

Shape memory alloys exhibit a number of unique features which are being targeted for present and
projected applications [69, 99, 101]. Following a plastic deformation at low temperatures, the materi-
als will recover their original shape upon the application of heat – this constitutes the shape memory
effect which gives the materials their name. At higher temperatures, reversible deformations up to
10% can be obtained under nearly constant loads which gives the materials superelastic capabilities.
These deformation properties are commonly termed quasiplastic at low temperatures and pseudoe-
lastic at higher temperatures with the latter illustrated by the SMA data plotted in Figure 1c. All
of these characteristics are due to temperature or load induced phase transformations at the lattice
level and it is at this scale that we initiate model development. Most initial applications utilizing
SMA compounds were focused on polycrystalline NiTi wires whereas NiTi films are under present
investigation to support MEMs applications and to improve response times through increased surface
to volume ratios. For uniaxial loads, uniaxial models suffice for both regimes and are the focus of
this discussion. Hence we focus on characterizing the evolution of austenite A and the martensite
twins M+ and M− in SMA lattice layers.
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Following the theory developed in [69, 79, 93, 98, 99], we treat a lattice volume V of mass ν as
the fundamental element in the model and let xA(t), x+(t) and x−(t) respectively denote the volume
fraction of A, M+ and M− layers in the SMA. The phase fractions constitute internal variables which
necessarily satisfy the conservation relation

xA + x+ + x− = 1 (34)

over all time. To consolidate notation, we let α generically refer to the A, M+ and M− variants so
that the relation (34) can be reformulated as∑

α

xα(t) = 1.

2.3.1 Helmholtz and Gibbs Energies

The formulation of Helmholtz and Gibbs energy relations is common to a number of SMA theories
(e.g., see [53, 69, 99, 101] and the references cited therein), and differences between the theories arise
in the manner through which energy relations are defined and used to construct macroscopic models.
We employ the theory of [69, 99] to construct C1 energy relations based on piecewise quadratic
functions which characterize stable equilibria corresponding to the A, M+ and M− phases.

As illustrated in Figure 4, the fundamental order parameter is the shear strain ε which has the
value ε = 0 for austenite and the equilibrium value ε = εT for martensite in a stress-free state. The
linear moduli for martensite and austenite are respectively denoted by YM and YA. To model the
transition from stability of martensite variants at low temperatures to stability of the austenite phase
at high temperatures, we employ the C1 Helmholtz energy relation

ψ(ε, T ) =




YM

2
(ε + εT )2 , ε ≤ −εM (T )

−E0(T )
2

(ε + ε0(T ))2 + ψ0(T ) , −εM (T ) < ε < −εA(T )

YA

2
ε2 + ∆β(T ) , |ε| ≤ εA(T )

−E0(T )
2

(ε− ε0(T ))2 + ψ0(T ) , εA(T ) < ε < εM (T )

YM

2
(ε− εT )2 , ε ≥ εM (T ) .

(35)

The temperature-dependent inflection points εM (T ), εA(T ), and their negatives, delineate the transi-
tion from convex regions, which represent stable austenite and martensite phases, to concave regions

M− A M+

ε = εT

Figure 4. Lattice element exhibiting the martensite M−, M+ and austenite A equilibrium configu-
rations.
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Figure 5. (a) Piecewise quadratic Helmholtz energy (35) for fixed temperature T ; dashed segments
represent concave, unstable regions. (b) Helmholtz energy as a function of T .

representing unstable states. The maxima of the concave parabolae occur at the temperature-
dependent points (±ε0(T ), ψ0(T )), and the parameter E0(T ) is chosen to ensure C1 continuity. As
depicted in Figure 5, the austenite minimum has the height

∆β(T ) = βA(T )− βM (T ) (36)

where
βα(T ) = cα(T − TR) + uR − Tsα (37)

represent chemical (nonelastic) free energies [69, 99, 101]. Here cα, uα and TR respectively denote
specific heat capacities multiplied by the material density, phase-dependent internal energy constants,
and the temperature of the reference state from which energies are computed. Furthermore,

Sα = cα ln(T/TR) + ηR (38)

are specific entropies and ηα are phase-dependent entropy constants.
The Helmholtz relation (35) quantifies the energy for a layer in the absence of applied loads.

To incorporate distortions in the energy landscape due to applied stresses σ, we employ the Gibbs
relation

G(ε, σ, T ) = ψ(ε, T )− εσ (39)

resulting from (3). In Figure 6a, we illustrate the Gibbs energy for a lattice volume V at a fixed
temperature T = TA chosen so that the material exhibits the austenite phase for σ = 0. As σ
is increased, the landscape distorts until the critical stress σA at which point the stable austenite
equilibrium ceases to be a local minimum and M+ becomes the stable phase. It will remain such until
the stress is decreased to a second critical value σM . Here the local martensite minimum disappears
and the material returns to the austenite phase.

2.3.2 Local Average Stress-Strain Relations

To quantify the pseudoelastic load deformation behavior which accompanies the increase in stress
through the critical value σA and subsequent decrease through the second critical value σM , one can
quantify the evolution of associated phase fractions in the absence or presence of thermal activation
in a manner analogous to that summarized previously for ferroelectric and ferromagnetic compounds.

For reference volumes V in which thermal activation is negligible, the local average stress-strain
behavior is quantified solely by necessary conditions associated with the Gibbs energy G given by (39).

15



G(ε,σ,T)M−
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σ

(b)

A

σ

(c)

Figure 6. (a) Gibbs energy (39) for a fixed temperature T in the austenite range with σ = 0,
σ = σA and σ = σM . (b) Local stress-strain relation produced by the equilibrium condition (3) for
fixed temperature T and negligible relative thermal energy kT/V . (c) Local stress-strain relation in
the presence of relative thermal energy kT/V for fixed T .

From (2), it follows that the conditions

∂G

∂ε
= 0 ,

∂2G

∂ε2
> 0 (40)

must hold at stable equilibria which yields the critical stress values

σA(T ) = YAεA(T )

σM (T ) = YM [εM (T )− εT ].
(41)

For material characterization, it is advantageous to define the temperature-dependent parameters

δ(T ) = σA(T )− σM (T ) (42)

which, it will be later illustrated, can be estimated from measured data. Due to the quadratic
definition of the Gibbs energy, the local stress-strain behavior is linear in the absence of thermal
activation, as depicted in Figure 6b. To incorporate the switching history, we employ the Preisach
notation

[ε(σ; δ, ξ)](t) =




[ε(σ; δ, ξ)](0) , τ(t) = ∅
σ

YM
+ εT , τ(t) 6= ∅ and σ(max τ(t)) = σA

σ
YA

, τ(t) 6= ∅ and σ(max τ(t)) = σM

(43)

to quantify the local average strains due to the positive applied loads σ (similar expressions hold
for compressive loads). Analogous to the ferroelectric definitions (19) and (20) and ferromagnetic
definition (28),

[ε(σ; δ, ξ)](0) =




σ
YA

, σ(0) ≤ σM

ξ , σM < σ(0) < σA

σ
YM

+ εT , σ(0) ≥ σA

(44)
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and
τ(t) = {t ∈ (0, Tf ] |σ(t) = σM or σ(t) = σA}, (45)

respectively denote the initial phase configuration and switching times.
To quantify the local average strains ε for reference volumes in which thermal activation is signif-

icant, it is necessary to balance the Gibbs energy G with the relative thermal energy kT/V through
the Boltzmann relation (8). Physically, large values of kT/V mean that with higher probability,
layers will achieve the energy required to exit a local minimum before the stress values σA or σM

are reached. This produces the gradual transitions and decreased transition stress values depicted
in Figure 6c.

As detailed in [69, 93, 99], the likelihood pA± that austenite will transform to M± and the
likelihoods p± that M± will transform either to austenite or the other martensite variant are given by

pA±(σ, T ) =

√
kT

2πνV 2/3

e−G(±εA,σ,T )V/kT∫
χA

e−G(ε,σ,T )V/kT dε

p±(σ, T ) =

√
kT

2πνV 2/3

e−G(±εM ,σ,T )V/kT∫
χM±

e−G(ε,σ,T )V/kT dε

(46)

where χA(T ) = (−εA(T ), εA(T )), χM+(T ) = (εM (T ),∞) and χM−(T ) = (−∞,−εM (T )) respectively
denote regions over which austenite, M+ and M− are stable. Moreover, the expected strains due to
austenite and M± variants are given by

〈ε−〉 =
∫

χM−
εµ(G(ε, σ, T )) dε

〈ε+〉 =
∫

χM+

εµ(G(ε, σ, T )) dε

〈εA〉 =
∫

χA

εµ(G(ε, σ, T )) dε

(47)

where µ is given in (8) and the Gibbs energy is specified in (39). The evolution of phase fractions is
governed by the rate laws

ẋ−(t) = pA−xA(t)− p−x−(t)

ẋ+(t) = pA+xA(t)− p+x+(t)

ẋA(t) = p−x−(t)− pA−xA(t) + p+x+(t)− pA+xA(t)

(48)

which can be reduced to
ẋ−(t) = −(p− + pA−)x−(t)− pA−x+(t) + pA−

ẋ+(t) = −(p+ + pA+)x+(t)− pA+x−(t) + pA+

(49)

through the conservation relation (34). To compute the local average strain for the reference volume,
we make the assumption that thermal strains are small compared to mechanical strains and retain
only the latter component. As discussed in [69], this assumption is valid for bulk materials but may
need to be modified for SMA thin films. Under this assumption, the local average strains, in regimes
for which thermal activation or relaxation mechanisms are significant, are given by

ε = 〈ε−〉x− + 〈ε+〉x+ + 〈εA〉xA (50)

where x−, x+ are specified by (49), xA = 1− x+ − x−, and 〈ε−〉 , 〈ε+〉 and 〈εA〉 are defined in (47).
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2.3.3 Thermal Evolution

The quantification of thermal processes is analogous to that considered in (15) for ferroelectric
compounds and (33) for ferromagnetic materials, and includes convective and conductive mecha-
nisms, Joule heating and heat transduction due to phase transitions. As in Sections 2.1.3 and 2.2.3,
we let hc, TE , ρe

α, cα, Ω,A,M, λ and ` respectively denote the convection coefficient, temperature
of the surrounding environment, phase-dependent electric resistivity, phase-dependent specific heat,
SMA surface area, SMA cross-sectional area, the mass of the SMA, the thermal conductivity of the
surrounding medium and the length of any conduction paths. An energy balance then yields the
differential equation

Mc̄(t)Ṫ (t) = −Ω[hc + λ/`][T − Te(t)] + J(t)−
∑
α

hαẋα (51)

which quantified the temperature evolution (see [69, 93, 98, 99]). The first term on the right hand side
characterizes heat exchanged with the surrounding environment through convection and conduction
in a manner analogous to (15) and (33) for ferroelectric and ferromagnetic materials. For an input
current I(t), the relation

J(t) = ρ̄e(t)
I2(t)
A , (52)

where ρ̄e(t) =
∑

α ρe
αxα(t) is the average resistivity per unit length, quantifies heat generated through

Joule heating. The final term in (51) accounts for heat generated or lost during phase transformations.
As discussed in [69], the specific enthalpies hα have the form

hα = gα + Tsα

where gα are local minima of the Gibbs relation (39) and sα denotes the specific entropies defined
in (38). Finally, the average specific heat is given by c̄(t) =

∑
α cαxα(t). We note that c̄ and ρ̄e are

assumed to be constant in the ferroelectric and ferromagnetic relations whereas their time-dependence
in (51) and (52) reflects their dependence on evolving phase distributions in shape memory alloys.

2.4 Unified Mesoscopic Models

In Section 2.1, 2.2 and 2.3, we summarized the development of nonlinear hysteresis models for ferro-
electric, ferromagnetic and ferroelastic compounds, respectively. We discuss here the unified nature
of the modeling framework and indicate the degree to which the three models can be consolidated
through common notation.

As noted in the introduction to this section, the polarization P , magnetization M , and strain
ε can all be represented by the order parameter e whereas the electric field E, magnetic field H
and stress σ can be respectively represented by the external field ϕ which is thermodynamically
conjugate to e. The definitions of subscripted parameters follow the conventions established in
previous subsections (e.g., eI = PI or MI). In all definitions, the Boltzmann probability µ(G) is
specified by (8) and domains of integration are defined by χ+ = (eI ,∞), χ− = (−∞,−eI), χA =
(−εA, εA), χM+ = (εM ,∞) and χM− = (−∞,−εM ).

By employing the order parameter, conjugate fields, and appropriate parameters, the magneti-
zation and polarization models can be completely unified in the absence of phase transitions. The
strain model for ferroelastic compounds falls within the same modeling framework but some individ-
ual definitions differ slightly due to the inherent phase transitions. While notation can be established
to formulate all three models in terms of unified definitions and expressions, the required generality
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obscures rather than clarifies the framework so we omit it here. Finally, we note that the uni-
fied mesoscopic models summarized here represent only the fundamental theory and a number of
generalizations to this theory are discussed in previous subsections.

Ferroelectric and Ferromagnetic Materials

Helmholtz and Gibbs Energy Relations:

ψ(e, T ) =
ϕhes

2
[
1− (e/es)2

]
+

ϕhT

2Tc

[
e ln

(
e + es

es − e

)
+ es ln(1− (e/es)2)

]

ψ(e) =




1
2η(e + eR)2 , e ≤ −eI

1
2η(e− eR)2 , e ≥ eI

1
2η(eI − eR)

(
e2

eI
− eR

)
, |e| < eI

G(e, ϕ, T ) = ψ(e, T )− eϕ

Mesoscopic Model – No Relaxation Mechanisms:

[e(ϕ; ϕc, ξ)](t) =




[e(ϕ; ϕc, ξ)](0) , τ(t) = ∅
ϕ
η − eR , τ(t) 6= ∅ and ϕ(max τ(t)) = −ϕc

ϕ
η + eR , τ(t) 6= ∅ and ϕ(max τ(t)) = ϕc

[e(ϕ; ϕc, ξ)](0) =




ϕ
η − eR , ϕ(0) ≤ −ϕc

ξ , −ϕc < ϕ(0) < ϕc
ϕ
η + eR , ϕ(0) ≥ ϕc

τ(t) = {t ∈ (0, Tf ] |ϕ(t) = −ϕc or ϕ(t) = ϕc}

Mesoscopic Model – with Relaxation Mechanisms:

e = x+ 〈e+〉+ x− 〈e−〉

〈e±〉 =
∫

χ±
eµ(G(e, φ, T ))de

ẋ+ = −p+−x+ + p−+(1− x+)

x− = 1− x+

p± =
1

T (T )
µ(G(±eI , φ, T ))

Thermal Evolution:

c̄MṪ (t) = −Ω[hc + λ/`][T − TE(t)] + J(t)−
∑
α

hαẋα
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Ferroelastic Materials – Austenite and Martensite Phases

Helmholtz and Gibbs Energy Relations:

ψ(e, T ) =




YM

2
(e + eT )2 , e ≤ −eM (T )

−E0(T )
2

(e + e0(T ))2 + ψ0(T ) , −eM (T ) < e < −eA(T )

YA

2
e2 + ∆β(T ) , |e| ≤ eA(T )

−E0(T )
2

(e− e0(T ))2 + ψ0(T ) , eA(T ) < e < eM (T )

YM

2
(e− eT )2 , e ≥ eM (T )

G(e, ϕ, T ) = ψ(e, T )− eϕ

Mesoscopic Model – No Relaxation Mechanisms:

[e(ϕ; ϕc, ξ)](t) =




[e(ϕ; ϕc, ξ)](0) , τ(t) = ∅
ϕ

YM
+ eT , τ(t) 6= ∅ and ϕ(max τ(t)) = ϕM

ϕ
YA

, τ(t) 6= ∅ and ϕ(max τ(t)) = ϕA

[e(ϕ; ϕc, ξ)](0) =




ϕ
YA

, ϕ(0) ≤ ϕM

ξ , ϕM < ϕ(0) < ϕA
ϕ

YM
+ eT , ϕ(0) ≥ ϕA

τ(t) = {t ∈ (0, Tf ] |ϕ(t) = ϕM or ϕ(t) = ϕA}

Mesoscopic Model – with Relaxation Mechanisms:

e = x+ 〈e+〉+ x− 〈e−〉+ xA 〈eA〉

〈e±〉 =
∫

χM±
eµ(G(e, φ, T ))de , 〈eA〉 =

∫
χA

eµ(G(e, φ, T ))de

ẋ−(t) = −(p− + pA−)x−(t)− pA−x+(t) + pA−

ẋ+(t) = −(p+ + pA+)x+(t)− pA+x−(t) + pA+

xA = 1− x+ − x−

p± =
1

T (T )
µ(G(±eM , φ, T )) , pA± =

1
T (T )

µ(G(±eA, φ, T ))

Thermal Evolution:

Mc̄Ṫ (t) = −Ω[hc + λ/`][T − TE(t)] + J(t)−
∑
α

hαẋα
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2.5 Macroscopic Models for Homogeneous, Single Crystal Compounds

The hysteresis models in Sections 2.1, 2.2 and 2.3 were all developed at the lattice level under the
assumption of isotropic, homogeneous material properties throughout the reference volume V . This
implies that the the weighted exchange energy Φ0 employed in the Helmholtz relations (4) and
(22) is constant which in turn implies that the respective bias fields Eh = NΦ0

V Ps
and Hh = NΦ0

V Ms

and parameters α = Eh
Ps

and α = Hh
Ms

respectively employed in (17) and (25) are constant. Since
Ee = E+αP and He = H+αM represent effective fields, the assumption of uniform lattice properties
and homogeneous exchange energy relations implies constant effective fields throughout V .

For isotropic, homogeneous, single crystal materials, the local average models (14), (17) or (19)
for P , (25), (29) or (32) for M , and (43) or (50) for ε can be extended throughout the compounds to
provide bulk or macroscopic constitutive relations. Hence they can be employed to quantify single
crystal behavior of the type experimentally measured for the ferroelectric material BaTiO3 (e.g., see
page 76 of [72]) and the shape memory alloy CuZnAl [38, 109].

The local relations do not, however, accurately quantify the gradual transitions and pre-remanent
switching characteristic of nonhomogeneous, polycrystalline compounds with nonuniform effective
fields. In the next section, we employ the local average polarization, magnetization and strain rela-
tions as kernels when developing stochastic homogenization techniques to incorporate the variability
inherent to the majority of ferroic compounds.

3 Macroscopic Models for Nonhomogeneous Polycrystalline Com-
pounds

The mesoscopic models developed in Section 2 can be directly employed when quantifying the polar-
ization and stress-induced strains in certain single crystal ferroelectric and ferroelastic compounds as
well as the magnetization in some uniaxial wires and annealed toroidal specimens [23]. However, the
transitions provided by these local models are too steep to accurately characterize hysteresis in gen-
eral ferroic materials due to variations in the free energy relations produced by material, stress and
field nonhomogeneities, nonuniform lattice variations across grain boundaries, and stress and crys-
talline anisotropies. The introduction of these material attributes into the energy relations requires
analysis similar to that employed in micromagnetic models [12, 13, 14, 32, 54] or micromechanical
theory [43] and typically produces models whose complexity precludes transducer design or real-
time control implementation. Alternatively, one can employ local energy relations as kernels from
which low-order macroscopic models be derived either through homogenization techniques or the
determination of bulk effective parameters through stochastic or empirical means. In this section,
we consider certain parameters in the local energy-based relations to be stochastically distributed
to reflect variations in the lattice, grain orientations, or exchange energies. This yields low-order
macroscopic models in which the majority of parameters can be correlated with measured properties
of experimental data. As will be illustrated in Section 4, the models accurately characterize both
major and biased minor loop data for a wide range of ferroic compounds.

3.1 Ferroelectric Materials

We consider first the construction of macroscopic models for ferroelectric compounds. As illustrated
in Figure 7, variations in the lattice due to material nonhomogeneities, impurities, grain boundaries,
or polycrystallinity, are manifested as variation in the Helmholtz and Gibbs energies which in turn
produce a distribution of fundamental hysterons or hysteresis kernels. To incorporate this variability
in a manner which facilitates the construction of low-order macroscopic models, we consider the local
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Figure 7. (a) Nonuniform lattice and polycrystalline structure of PZT. (b) Helmholtz energies
associated with lattice structures (i) and (ii). (c) Variations in hysteresis kernels due to differing
energy profiles.

coercive fields Ec, given by (6), to be manifestations of an underlying distribution rather than fixed
values as assumed for single crystals with uniform lattices. To enforce the physical constraint Ec > 0,
we assume that variations in Ec can be modeled by a lognormal distribution with the density

f(Ec) = c1e
−[ln(Ec/Ec)/2c]2 . (53)

It is noted in [114] that if the constant c is small compared with Ec, the mean and variance of the
distribution have the approximate values

〈Ec〉 ≈ Ec , σ ≈ 2Ec c . (54)

The second extension of the local average relations (14), (18) or (21) is the consideration of
effective fields in the material. As indicated in [6, 70], the applied field E in ferroelectric materials is
augmented by fields produced by neighboring dipoles which produces nonhomogeneous effective fields
Ee in the materials. This produces deviations about the applied field which can produce switching
in advance of the remanence point. To incorporate these variations, we consider the effective field to
be normally distributed about the applied field with the density

f̃(Ee) = c2e
−(E−Ee)2/b. (55)
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The macroscopic polarization model combines the densities (53) and (55) to yield

[P (E)](t) = C

∫ ∞

0

∫ ∞

−∞
[P (Ee + E, Ec, ξ)](t)e−E2

e/be−[ln(Ec/Ec)/2c]2dEedEc (56)

where P is specified by (14), (18) or (21) and ξ denotes the initial distribution of dipoles. Discussion
concerning the incorporation of lattice variations and variable effective fields in the Ising relation
(16) as well as details regarding the approximation of the integrals and implementation of the model
are provided in [114].

We note that while the polarization model (56) does incorporate relaxation mechanisms, it does
not incorporate dynamic elastic effects and hence should be employed in low frequency regimes.
Initial extensions to the free energy relations and the resulting constitutive relations required for
constructing fully dynamic models have been investigated in [111]. Finally, we note that the choice
of the lognormal and normal densities (53) and (55) is based on their mathematical properties rather
than a priori physical arguments. The estimation of general densities, which reflect the measured
physical properties of a given material are reported in [107].

3.2 Ferromagnetic Materials

To accommodate material nonhomogeneities, polycrystallinity and nonuniform effective fields in
ferromagnetic materials, we employ lattice and field distributions analogous to their ferroelectric
counterparts. Lattice variations can be modeled by assuming that local magnetic coercive fields Hc

are manifestations of an underlying distribution which, for the models presented here, we assume to
have the lognormal density

f(Hc) = c1e
−[ln(Hc/Hc)/2c]2 . (57)

It is noted in [112], where the present modeling framework is used to establish an energy basis for
Preisach models, that lognormal densities play a fundamental role in Preisach theory for magnetic
materials due to the natural manner through which they enforce positivity in parameter values [31].

To provide additional physical motivation regarding assumed effective field variability and to
relate this analysis to previous models, we consider first the local magnetization relation (25), derived
from statistical mechanics tenets, with effective fields He = H + αM . As noted in Section 2, the
mean field parameter α is given by

α =
Hh

Ms
=

NΦ0

V M2
s

(58)

where Φ0 is the energy required to reorient a single moment in an ordered lattice. Furthermore, it is
illustrated in [105] that

Φ0 = 2ξJ (59)

where J is the classical exchange integral and ξ denotes the number of neighbors adjacent to a site.
It is implicitly assumed in the mesoscopic theory yielding M that J , and hence Φ0, is constant.

Thus α in the effective field He = H + αM is constant, as assumed in the macroscopic hysteresis
models developed in [56, 58]. However, for nonhomogeneous, polycrystalline materials, it is more
reasonable to assume that the exchange integral J is variable rather than constant. At the quantum
level, this variability can be incorporated by modeling the overlap of electron wave functions whereas
at the macroscopic level, we can incorporate this variability by employing effective fields

He = H + αM (60)
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where α satisfies an underlying distribution. To avoid the implicit dependence on M afforded by
(60), one can alternatively model or estimate the distribution of He, and it is this approach that we
employ here.

The assumption that the effective field is normally distributed about the applied field H yields
the density

f̃(He) = c2e
−(H−He)2/b (61)

and macroscopic model

[M(H)](t) = C

∫ ∞

0

∫ ∞

−∞
[M(He + H, Hc, ξ)](t)e−H2

e /be−[ln(Hc/Hc)/2c]2dHedHc

= C

∫ ∞

0

∫ ∞

−∞
ν(Hc, He)[M(He + H, Hc, ξ)](t)dHedHc

(62)

for the bulk magnetization M . The kernel, or fundamental hysteron, M is given by (27), (29) or
(32) and ξ quantifies the initial moment orientation. As with the ferroelectric model, the underlying
assumption of lognormal and normal densities for Hc and He can be avoided through the estimation
of a general density ν through techniques analogous to those employed in [102, 117] for estimating
densities in Preisach models.

Details regarding the formulation and implementation of (62) can be found in [106, 105]. We note
that because the given formulation does not incorporate eddy current losses, it should be restricted
to low frequency regimes or transducer configurations which minimize eddy current losses.

3.3 Ferroelastic Materials

The effects of polycrystallinity, material nonhomogeneities, and lattice variations across grain bound-
aries in ferroelastic materials can be incorporated by considering stochastic distributions of the ef-
fective stress σe and either the transformation stress σA or relative stress δ = σA − σM given by
(42). Because σA ≥ σM , as depicted in Figure 6, variability in δ can be incorporated through the
assumption that δ is is lognormally distributed with the density function

f(δ) = c1e
−[ln(δ/δ)/2c]2 (63)

as detailed in [69]. Furthermore, it is illustrated in [97], as well as the example of Section 4.3, that
for certain ferroelastic compounds, the Laplace relation

f(σA) =
1
2c

e−|σA−σA|/c (64)

can be employed to accurately characterize the distribution of σA. Two appropriate choices for the
underlying effective field distribution are the normal density relation

f̃(σe) = c2e
−(σ−σe)2/b (65)

or the Laplace relation

f̃(σe) =
1
2b

e−|σ−σe|/b. (66)

For the densities (63) and (65), this yields the macroscopic relation

[ε(σ, T )](t) = C

∫ ∞

0

∫ ∞

−∞
[ε(σe + σ, δ, ξ)](t)e−σ2

e/be−[ln(δ/δ)/2c]2dσedδ (67)
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quantifying bulk strains due to input stresses and evolving temperatures. The ferroelastic kernel ε is
given by (43) or (50) and the multiplicative constant is simply C = c1 · c2. The choice of the Laplace
densities (64) and (66) yields the analogous relation

[ε(σ, T )](t) = C

∫ ∞

0

∫ ∞

−∞
[ε(σe + σ, δ, ξ)](t)e−|σe|/be−|σA−σA|/cdσedσA (68)

for ε.

3.4 Unified Macroscopic Models

In Section 2.4, we demonstrated that by employing a general order parameter e = P, M or ε and
conjugate field ϕ = E, H or σ, mesoscopic models characterizing hysteresis in ferroelectric, ferromag-
netic and ferroelastic materials could be consolidated to provide a unified, energy-based framework
for quantifying hysteresis at the lattice level in ferroic compounds. Here we employ these lattice-level
relations as kernels to construct a unified macroscopic framework for modeling hysteresis and con-
stitutive nonlinearities in bulk ferroic materials. This framework can subsequently be employed for
material characterization, hybrid transducer design, and unified control design for systems employing
ferroelectric, ferromagnetic or ferroelastic actuators and sensors.

We let ϕc = Ec, Hc or δ denote general coercive or relative fields and let ϕe = Ee, He or σe denote
effective fields. We also let e = P , M or ε denote the local average polarization, magnetization, and
strain respectively defined in (14) or (21), (27) or (32), and (43) or (50), with general relations for e
summarized in Section 2.4. Initial dipole, moment and strain configurations are specified by ξ.

The hysteresis and constitutive nonlinearities inherent to ferroic compounds can then be quanti-
fied by the general relation

[e(ϕ)](t) = C

∫ ∞

0

∫ ∞

−∞
[e(ϕe + ϕ, ϕc, ξ)](t)e−ϕ2

e/be−[ln(ϕc/ϕc)/2c]2dϕedϕc (69)

where C, b, ϕc and c are material-dependent parameters. If additional generality is required, one can
employ the model

[e(ϕ)](t) = C

∫ ∞

0

∫ ∞

−∞
ν(ϕc, ϕe)[e(ϕe + ϕ, ϕc, ξ)](t)dϕedϕc (70)

where ν is a general density to be estimated through a least squares fit to data or direct solution tech-
niques analogous to those developed for Preisach models [102]. As indicated in previous discussion,
the constitutive models incorporate relaxation mechanisms but do not incorporate general dynamic
effects. Hence (69) and (70) should be employed in low frequency regimes or modes of operation for
which dynamic effects are minimal.

4 Experimental Validation

To illustrate the performance of the unified modeling framework, we consider the characterization of
hysteresis and constitutive nonlinearities in PZT5A, Terfenol-D, and NiTi. In all cases, quasistatic
drive conditions were employed to minimize rate dependencies in the PZT and NiTi and eddy current
losses in the Terfenol-D. A fundamental step in the model construction entails the estimation of model
parameters and in each of the examples, we discuss the manner through which initial parameter
estimates can be obtained using properties of the data.
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4.1 Experimental Validation for PZT5A

We consider first the characterization of the hysteretic E-P relation for PZT5A. Data was collected
from a 1.7 cm × 0.635 cm × 0.0381 cm PZT wafer at 200 mHz with peak voltages ranging from 600 V
to 1600 V – corresponding field values can be computed using the relation E = V/h where h = 3.81×
10−4 m denotes the thickness of the wafer – as shown in Figure 8. The low drive frequency yielded
approximately isothermal operating conditions so it was not necessary to incorporate temperature
changes through the evolution equation (15).

The field-polarization relation is characterized using the model (56) with the kernel P specified
by (21) since the focus here is on the quantification of multiple drive levels rather than measurement
and characterization of relaxation mechanisms. We point out that similar results have been obtained
with the kernel (14) which retains the activation energy mechanisms required to resolve relaxation
effects. Regardless of kernel, implementation of (56) requires the approximation of the integrals.
This was accomplished using composite Gaussian quadrature over a truncated range of integration
chosen to accommodate the decay exhibited by the densities f and f̃ . As illustrated in [114], where
details regarding the implementation of the model are provided, convergence was obtained for both
integrals using a 4 point Gaussian rule over a composite grid having 20 divisions.

To construct the model, the parameters PR, η, b, Ec, c and C must be estimated using attributes of
the data. For the piecewise linear kernel P given by (21), PR and C both have the effect of scaling the
polarization for a given field input. Hence they can be combined and initially chosen to obtain correct
saturation behavior. The slope of the kernel scales through the stochastic homogenization process
so measurements of the reciprocal slope ∂E

∂P provide initial estimates for η. From (54), it follows that
an initial estimate for Ec is provided by the measured coercive field whereas small values of c are
required when characterizing data with a steep transition through coercivity since little variability is
exhibited about the mean value Ec. Finally, the parameter b quantifies the variance in the effective
field which determines, in part, the degree to which switching occurs before remanence. Materials

−5 0 5
−0.5

0

0.5
600 V

−5 0 5
−0.5

0

0.5
800 V

−5 0 5
−0.5

0

0.5
1000 V

−5 0 5
−0.5

0

0.5
1600 V

Figure 8. PZT5A data (– – –) and model predictions (——) provided by (56) with the kernel P
specified by (21). Abscissas: electric field (MV/m), ordinates: polarization (C/m2).
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with nearly linear E-P relations at remanence yield small values of b whereas large values are required
to accommodate significant switching before remanence.

The coercive field for the 1600 V data is 1.2× 106 V/m and the slope after reversal at saturation
is 3.6×108, and these two values were used as initial estimates for Ec and η. A least squares fit to the
1600 V data was used to obtain the final parameter values PR = 0.04 C/m2, Ec = 0.866010×106 V/m,
η = 9.5× 108, c = 0.4272 V2/m2, b = 1.9754× 1011 V2/m2, C = 7.9926× 10−12 yielding the model
fit illustrated in the final plot of Figure 8. The model with these same values was then used to
predict the E-P relations for 600 V, 800 V and 1000 V inputs. The accuracy of both the high
drive level fit and intermediate drive level predictions and the physical nature of parameters attests
to the advantages provided by combining an energy-based kernel with stochastic homogenization
techniques to accommodate material nonhomogeneities. Further examples illustrating the predictive
capabilities of the model for PZT5H and PZT4 compounds, as well as numerical examples illustrating
the enforced closure of multiply nested biased minor loops, can be found in [114].

4.2 Experimental Validation for a Terfenol-D Transducer

To illustrate the ferromagnetic component of the framework as well as the capability of the model
to guarantee closure of biased minor loops in quasistatic operating regimes, we consider the char-
acterization H-M relation for a prototypical Terfenol-D transducer. As illustrated in Figure 9 and
detailed in [17, 30], Terfenol-D transducers employed for both research development and commercial
applications are comprised of a Terfenol-D rod, a surrounding wound wire solenoid, a biasing perma-
nent magnet, and prestress mechanisms. Data collected at 0.2 Hz under zero prestress, isothermal
room temperature conditions is plotted in Figure 10.

The hysteretic and nonlinear relation between H and M is quantified by the model (62) with
the kernel M specified by (27). The relationships between parameters in the model and attributes
of the data are analogous to the ferroelectric case for which details are provided in Section 4.1.
To construct the model, the measured coercive field value Hc = 6158 A/m and reciprocal slope
dH
dM = 6.5 after saturation were used to obtain initial estimates for Hc and η. The final parameter
values MR = 8.7 × 104 A/m, η = 7, Hc = 2000 A/m, c = 0.65 A2/m2, b = 5 × 108 A2/m2,
C = 1.98 × 10−8 were then obtained through a least squares fit to the symmetric major loop data
yielding the model fit illustrated in Figure 10. Biased, periodic fields were subsequently input to
the model, using the same parameter values, to obtain the minor loop predictions, also plotted in
Figure 10. We note that when predicting the minor loop responses, the starting magnetization is
determined from the symmetric loop fit; hence the accuracy of the minor loops is highly dependent
on the accuracy of the symmetric major loop. Additional examples illustrating the attributes of the
hysteresis model for ferromagnetic materials can be found in [105, 106].
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Figure 10. Terfenol-D data and model response provided by (62).

4.3 Experimental Validation for NiTi

The final example is taken from [97] and illustrates the characterization of both major and biased
minor loops for a pseudoelastic SMA wire in a tensile experiment conducted at room temperature
as illustrated in Figure 11.

The wire is a typical NiTi compound (SE508) from Nitinol Devices and Components (NDC)
having a diameter of d = 0.5 mm and length of ` = 100 mm which underwent a training procedure
of 100 previous loading/unloading cycles. The mesoscopic model parameters include the density
ρ = 6400 kg m−3, the two Young’s moduli YA = 32 GPa and YM = 20 GPa, and the transformation
strain εT = 0.038. The transformation stresses were determined to be σA(TL) = 430 MPa at
TL = 323 K and σA(TU ) = 660 MPa at TU = 353 K. The width δ of the hysteresis curve, specified
by (42), was taken to be δ = 100 MPa. Since convection mechanisms dominated conduction in the
experiments, the heat transfer coefficient was taken to be hc = 200 W m−2 K−1 and the thermal
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Figure 11. Superelastic NiTi data [94] and model fit provided by (68) with ε specified by (50).
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conductivity was specified as λ = 0 W m−1 K−1. The specific heats for austenite and martensite
were taken to be equal and having the value of cA = cM = 450 J kg−1 K−1. The relaxation time was
chosen to be T = 10 ms and the activation volume was specified to be 1 × 10−23 m3. Finally, the
macroscopic homogenization was performed using the Laplace distributions (64) and (66) with the
parameters σA = 273 MPa and b = c = 30 MPa.

It is observed that the model accurately characterizes the linearly elastic austenite behavior, the
phase transition from austenite to martensite and back again, and the behavior of the nested minor
loops. This illustrates the utility of the model for bulk material characterization, transducer design
and model-based control design.

5 Concluding Remarks

The theory presented here provides a unified framework for modeling hysteresis and constitutive
nonlinearities inherent to a broad range of ferroelectric, ferromagnetic, and ferroelastic compounds.
At the microscopic scale, the sources of hysteresis vary quite significantly and can roughly be at-
tributed to dipole switching in ferroelectric materials, moment rotation and domain wall losses in
ferromagnetic materials, and transitions between austenite and martensite phases in ferroelastic
compounds. At the lattice level, however, analogous Helmholtz and Gibbs energy relations can be
formulated and employed to construct unified mesoscopic models both in the presence and absence
of thermally activated relaxation mechanisms. For homogeneous, single crystal compounds, the
mesoscopic relations can be extrapolated to yield macroscopic hysteresis models. To accommodate
material nonhomogeneities, polycrystallinity and nonuniform effective fields, stochastic homogeniza-
tion techniques, based on the assumption that parameters such as coercive, relative and effective
fields are manifestations of underlying distributions, are employed to construct macroscopic models.
These models provide sufficient accuracy for material characterization but are sufficiently low-order
to permit transducer design and model-based control development.

Given the general nature of the framework, it is not surprising that it bears certain similarities
with Preisach models and it is illustrated in [112] that it actually provides an energy basis for ex-
tended Preisach models – with four fundamental differences. (i) Due to is energy basis, a number
of the parameters in the present framework can be directly correlated with properties of the data
whereas Preisach parameters must typically be estimated solely through a least squares fit to data.
While least squares techniques are often used to fine tune parameters in the present models, the phys-
ical correlation provides initial estimates and facilitates model updating to accommodate changing
environmental conditions. (ii) The relaxation mechanisms and temperature-dependence are incor-
porated in the kernels, or hysterons, P , M and ε rather than in the densities or parameters as is the
case for Preisach models. This eliminates the necessity of vector-valued parameters or lookup tables
in subsequent control design. (iii) The model guarantees biased minor loop closure in quasistatic
operating regimes but does not enforce congruency. Hence it does not require modifications of the
type employed in moving Preisach models [31] to accommodate the noncongruency often encoun-
tered in measured data. (iv) The model automatically incorporates reversibility through the energy
construction of hysterons. This eliminates the modifications required in Preisach models to achieve
reversibility in certain drive regimes.

In order for any fixed-temperature, rate independent model to provide an energy basis for clas-
sical Preisach representations, it must satisfy the congruency and deletion properties established
by Mayergoyz as necessary and sufficient conditions for classical Preisach models [71]. Because the
energy-based models do not enforce congruency, they are thus not mathematically equivalent to
classical Preisach formulations. However, they do provide an energy basis for the moving Preisach
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models described in [31]. Moreover, use of the kernels (14), (32) or (50) that incorporate relaxation
mechanisms through statistical mechanics principles yields macroscopic models which are analogous
to the statistically modified Preisach models used to model aftereffects and accommodation in mag-
netic materials [31]. Analysis quantifying the relationship between this modeling framework and
various extended Preisach theories is under present investigation.

From the perspective of model-based control design, this modeling approach is advantageous due
to both the accuracy and efficiency provided by the models and the fact that it provides a unified
framework for model-based control design. In the context of nonlinear optimal control design, the
models have recently been employed when developing control algorithms for piezoceramic transduc-
ers [124] and SMA actuators [45, 95] including real-time control implementation as reported in [96].
To permit linear control design, one often employs inverse models as filters to compensate for hys-
teresis and constitutive nonlinearities so that control inputs to the system are approximately those
specified by the control law. Whereas a number of control designs have been developed within this
context (e.g., see [24, 26, 42, 44, 73, 74, 75, 103, 117, 118]), all are dependent on having accurate
and efficient inverse models. For homogeneous, single crystal transducer compounds, the kernels
P , M or ε can either be directly inverted, or approximately inverted through the solution of comple-
mentary differential equations in a manner similar to that detailed for related models in [103, 104].
For nonhomogeneous, polycrystalline transducer compounds, approximate model inverses have been
constructed by employing the highly efficient macroscopic models in direct algorithms based on the
monotonic relation between external fields and the resulting changes in P, M or e [111]. Robust
control designs utilizing approximate inverses constructed in this manner are illustrated for magne-
tostrictive transducers in [74, 75], and analogous inverse-based control designs for PZT and SMA
transducers, and the real-time implementation of resulting control algorithms are under present
investigation.
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